NOVEL CAGE-SHAPED COMPOUNDS FROM REDUCTION OF r-2,3-EPOXY-2,3,4, c-4a,5,8,c-8a-HEXAHYDRO-c-5,8-ISOBUTYLIDENE-1,4-NAPHTHOQUINONES

Akitami ICHIHARA*, Hideo KAIBUCHI*, Makio KOBAYASHI*,

Kengo ODA*, Sadao SAKAMURA*, Akio FURUSAKI**, and Takeshi MATSUMOTO**

*Department of Agricultural Chemistry, Faculty of Agriculture,

**Department of Chemistry, Faculty of Science,

Hokkaido University, Sapporo 060

Novel cage-shaped compounds were obtained by the reduction of r-2,3-epoxy-2,3,4,c-4a,5,8,c-8a-hexahydro-c-5,8-isobutylidene-1,4-naphthoquinones (1) and assigned the structure 2 on the basis of the spectral data and X-ray crystallography. The compounds have an oxygen-containing strained cage structure higherto unknown.

In the course of the synthetic studies of highly oxygenated cyclohexane derivatives¹⁾, it was found that the reduction of $1a^2$ with excess sodium borohydride (8 equivalents) in tetrahydrofuran for 5 hr at room temperature gave an unexpected product 2a, mp 120° C, in 32% yield³⁾. The product was analyzed for $C_{/5}H_{2c}O_{3}$ $\frac{1}{2}H_{2}O$ and after heating at 90° C, water of crystallization was removed. The spectral data of 2a are as follows: Mass m/e 248 (M⁺), IR $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ (tetrahydrofuran), 1055, 1025 (OH), 910 cm⁻¹ (tetrahydrofuran), NMR (DMSO) $\frac{1}{100}$ $\frac{1}{100}$

Acetylation of 2a with acetic anhydride-pyridine gave a diacetate, mp 133°C, $C_{.9}H_{24}O_5$, IR $\sqrt[7]{\frac{KBr}{max}}$ 1732, 1233 (OAc), 1075, 912 cm⁻¹ (tetrahydrofuran), NMR $\stackrel{>}{>}$ (CC1₄), 0.78 (3H, s, CH₃), 1.68 (6H, s, =C $\binom{CH_3}{CH_3}$), 2.20 \sim 2.95 (4H, m, >CH), 3.97 \sim 4.38 (2H, br m, -HC-O-CH-), 4.87 (1H, q, B part of ABX spin system, J_{BA} =5.5 Hz, J_{BX} =1.5 Hz, -CHOAc), 5.13 (1H, d, A part of ABX spin system, J_{AB} =5.5 Hz, CH-OAc).

Since the NMR spectrum of the acetate showed the signals of ABX pattern ascribable to \propto -protons to acetoxy groups, structure 2a might be plausible for the unex-

pected compound. In fact, the test using periodate gave a positive result which proves the presence of glycol moiety. The same kind of unusual reduction was observed with the analog 1b, yielding product 2b, mp 151°C, $C_{/S}H_{2c}O_{\mu}$, IR $V_{\text{max}}^{\text{KBr}}$ 3400, 1050, 1015 cm $^{-1}$ (OH); NMR (DMSO) S_{CH} 1.37 (1H, br d, CH), 1.58 (6H, s, C_{CH} 1.75 \sim 1.97 (1H, m, -CH-), 2.13 \sim 2.43 (1H, m, -CH), 2.43 \sim 2.80 (2H, m, -CH-), 3.08 (1H, d, J=11 Hz, -CHOH), 3.51 (1H, d, J=11 Hz, CHOH), 3.70 (1H, d, J=6 Hz, V_{CH} 1.40 cm $^{-1}$ (OAc), NMR (CC14) S_{CH} 1.65 (6H, s, C_{CH} 1.89, 1.92, 1.96 (3H each, s, COCH₃), 2.16 \sim 2.95 (4H, m, -CH-), 3.60 (1H, d, J=11 Hz, -CHOH), 4.28 (1H, d, J=11 Hz, -CHOH), 4.20 \sim 4.97 (2H, m, -CH-O-CH-), 4.95 (1H, dd, J=6 Hz; J=2 Hz, -CHOAc), 5.27 (1H, d, J=6 Hz, -CHOAc).

The whole structure including stereochemistry of 2a was completely confirmed by the X-ray crystallography. The crystals are monoclinic, with eight molecules of 2a and four molecules of water in a unit cell with the dimensions of a=32.853 (3), b=6.003(1), c=13.713(2) Å, and $\beta=107.80(1)^{\circ}$. The calculated density is 1.281 g/cm³. The systematic absences, hkl with h+k odd and hOl with 1 odd, showed the space group to be either Cc or C2/c. At the beginning of the structure determination, the latter was assumed; this choice was confirmed later by successful refinement. Intensities of reflections with 2θ values up to 140° were measured on an automatic four-circle diffractometer using Cu KX radiation monochromatized with a LiF crystal, and were corrected for the usual Lorentz and polarization factors. Out of the structure factor magnitudes thus obtained, 2280 above 2 (F) were selected for the structural study. The structure was elucidated by

the direct method⁴⁾ on the basis of 479 IEI values above 1.30⁵⁾. An E-map calculated with 470 phases contained the whole structure. After the positional and thermal parameters of oxygen and carbon atoms were refined by the least-squares method, a difference Fourier synthesis was carried out. The resulting map yielded the locations of all 21 independent hydrogen atoms. The atomic parameters thus obtained were further refined by the block-diagonal-matrix least-squared method. The R value reached 5.3%. The final coordinates of the non-hydrogen atoms are listed in Table 1. The molecular framework obtained and the bond distances are shown in Figs. 1 and 2, respectively. Thus, the structure of the present molecule has been established as 2a.

Table 1. The final atomic coordinates

Atom	x/a	y/b	z/c	Atom	x/a	y/b	z/c
0(1)	0.13991	0.5270	-0.0498	C(6)	0.13601	0.1860	0.0435
0(2)	0.01535	0.2170	-0.0914	C(7)	0.16465	0.3959	0.0352
0(3)	0.03305	0.1573	0.1444	C(8)	0.16223	0.5290	0.1283
O(W)	0.00000	0.4762	0.2500	C(8a)	0.11210	0.5633	0.0902
C(1)	0.10014	0.5057	-0.0277	C(9)	0.17021	0.3502	0.2089
C(2)	0.09314	0.2505	-0.0381	C(10)	0.20076	0.3290	0.2979
C(3)	0.05381	0.1748	-0.0090	C(11)	0.23449	0.5048	0.3388
C(4)	0.05191	0.2991	0.0858	C(12)	0.20411	0.1294	0.3660
C(4a)	0.09644	0.3746	0.1468	C(13)	0.09184	0.1614	-0.1434
C(5)	0.13261	0.2038	0: 1549				

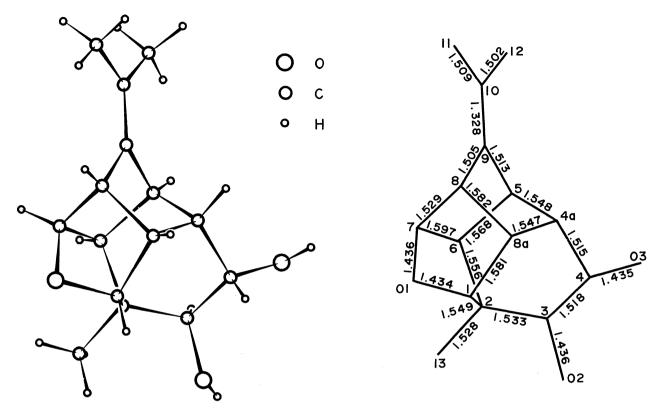


Fig.1. The molecular framework

Fig. 2. The bond distances (A)

References and Footnotes

- 1) For a recent publication in this series, see A. Ichihara, K. Oda, M. Kobayashi, and S. Sakamura, Tetrahedron Lett., 4235 (1974) and references cited therein.
- 2) A. Ichihara, M. Kobayashi, K. Oda, and S. Sakamura, Tetrahedron Lett., 4231 (1974).
- 3) The same treatment of exo-isomer of la gave no corresponding compound.
- 4) J. Karle and I. L. Karle, Acta Crystallogr., 21, 849 (1966).
- 5) All calculation were carried out on a FACOM 230-75 computer at the Computing Center of Hokkaido University, using our own programs.

(Received May 27, 1975)